本教程将带你系统地学习 E-puck 机器人的编程,采用循序渐进的方法,从最基础的概念开始,逐步深入到复杂的应用。E-puck 是一个教育型移动机器人,非常适合学习机器人学的基础知识。你将学习如何控制机器人的运动、读取传感器数据、实现避障、路径规划等技能。本教程基于官方 E-puck 文档。
E-puck 是一个教育型移动机器人,由瑞士洛桑联邦理工学院(EPFL)开发。它是一个直径约7厘米的圆形机器人,配备了两个轮子进行差动转向,以及8个红外距离传感器用于环境感知。E-puck 非常适合学习机器人学的基础概念。
让我们从最基础的运动控制开始。E-puck 使用差动转向,这意味着通过控制左右两个轮子的速度来实现转向。我们先创建一个简单的直线运动控制器:
from controller import Robot
# 创建机器人实例
robot = Robot()
# 获取时间步长
time_step = int(robot.getBasicTimeStep())
# 获取左右电机
left_motor = robot.getDevice("left_wheel_motor")
right_motor = robot.getDevice("right_wheel_motor")
# 设置电机为速度控制模式
left_motor.setPosition(float('inf'))
right_motor.setPosition(float('inf'))
# 设置基础速度(弧度/秒)
base_speed = 2.0
# 主控制循环
while robot.step(time_step) != -1:
# 设置左右轮速度相等,实现直线运动
left_motor.setVelocity(base_speed)
right_motor.setVelocity(base_speed)
这段代码让 E-puck 以恒定速度直线前进。通过设置左右轮速度相等,机器人会沿直线移动。
getDevice("left_wheel_motor")
- 获取左轮电机设备setPosition(float('inf'))
- 设置为速度控制模式setVelocity(speed)
- 设置轮子速度(弧度/秒)robot.step(time_step)
- 执行仿真步骤,更新物理状态E-puck 配备了8个红外距离传感器,分布在机器人周围。这些传感器可以检测障碍物距离,是实现避障和导航的基础。让我们学习如何读取和使用这些传感器:
from controller import Robot, DistanceSensor
# 创建机器人实例
robot = Robot()
time_step = int(robot.getBasicTimeStep())
# 获取所有距离传感器
sensors = []
for i in range(8):
sensor = robot.getDevice(f"ps{i}")
sensor.enable(time_step)
sensors.append(sensor)
# 主控制循环
while robot.step(time_step) != -1:
# 读取所有传感器值
sensor_values = []
for i, sensor in enumerate(sensors):
value = sensor.getValue()
sensor_values.append(value)
print(f"传感器 {i}: {value:.2f}")
# 计算平均距离
avg_distance = sum(sensor_values) / len(sensor_values)
print(f"平均距离: {avg_distance:.2f}")
现在让我们学习如何将传感器和执行器结合起来,实现一些简单的机器人行为。这是机器人编程的核心概念:感知-思考-行动循环。
from controller import Robot, DistanceSensor
# 创建机器人实例
robot = Robot()
time_step = int(robot.getBasicTimeStep())
# 获取左右电机
left_motor = robot.getDevice("left_wheel_motor")
right_motor = robot.getDevice("right_wheel_motor")
# 设置电机为速度控制模式
left_motor.setPosition(float('inf'))
right_motor.setPosition(float('inf'))
# 获取前方距离传感器
front_sensor = robot.getDevice("ps0")
front_sensor.enable(time_step)
# 基础速度设置
base_speed = 2.0
turn_speed = 1.5
# 主控制循环
while robot.step(time_step) != -1:
# 读取前方传感器
front_distance = front_sensor.getValue()
# 简单的避障逻辑
if front_distance > 100: # 前方无障碍物
# 直行
left_motor.setVelocity(base_speed)
right_motor.setVelocity(base_speed)
else: # 前方有障碍物
# 左转避障
left_motor.setVelocity(-turn_speed)
right_motor.setVelocity(turn_speed)
避障是移动机器人的基本技能。E-puck机器人有8个距离传感器,可以检测周围360度的障碍物。让我们学习几种不同的避障策略。
from controller import Robot
# 创建机器人实例
robot = Robot()
time_step = int(robot.getBasicTimeStep())
# 获取左右电机
left_motor = robot.getDevice("left_wheel_motor")
right_motor = robot.getDevice("right_wheel_motor")
left_motor.setPosition(float('inf'))
right_motor.setPosition(float('inf'))
# 获取所有距离传感器
sensors = []
for i in range(8):
sensor = robot.getDevice(f"ps{i}")
sensor.enable(time_step)
sensors.append(sensor)
# 速度设置
base_speed = 2.0
turn_speed = 1.5
def get_sensor_values():
"""读取所有传感器值"""
return [sensor.getValue() for sensor in sensors]
def obstacle_avoidance(sensor_values):
"""基于传感器值的避障策略"""
# 前方传感器 (ps0, ps1, ps7)
front_left = sensor_values[7] # ps7
front = sensor_values[0] # ps0
front_right = sensor_values[1] # ps1
# 侧方传感器
left = sensor_values[6] # ps6
right = sensor_values[2] # ps2
# 避障逻辑
if front < 100 or front_left < 80 or front_right < 80:
# 前方有障碍物,后退并转向
if left < right:
# 左侧空间大,向左转
return -turn_speed, turn_speed
else:
# 右侧空间大,向右转
return turn_speed, -turn_speed
elif left < 50:
# 左侧太近,向右转
return turn_speed, -turn_speed
elif right < 50:
# 右侧太近,向左转
return -turn_speed, turn_speed
else:
# 无障碍物,直行
return base_speed, base_speed
# 主控制循环
while robot.step(time_step) != -1:
# 读取传感器
sensor_values = get_sensor_values()
# 计算左右轮速度
left_speed, right_speed = obstacle_avoidance(sensor_values)
# 设置电机速度
left_motor.setVelocity(left_speed)
right_motor.setVelocity(right_speed)
循线行驶是机器人导航的基础技能。E-puck机器人可以使用地面传感器来检测地面上的线条,实现自动循线行驶。
from controller import Robot
# 创建机器人实例
robot = Robot()
time_step = int(robot.getBasicTimeStep())
# 获取左右电机
left_motor = robot.getDevice("left_wheel_motor")
right_motor = robot.getDevice("right_wheel_motor")
left_motor.setPosition(float('inf'))
right_motor.setPosition(float('inf'))
# 获取地面传感器(如果有的话)
# 注意:标准E-puck可能没有地面传感器,这里用距离传感器模拟
ground_sensors = []
for i in range(3): # 假设有3个地面传感器
sensor = robot.getDevice(f"gs{i}")
sensor.enable(time_step)
ground_sensors.append(sensor)
# 速度设置
base_speed = 2.0
turn_speed = 1.5
def line_following_control(ground_values):
"""基于地面传感器值的循线控制"""
# 假设地面传感器:0=黑线,1=白色地面
left_sensor = ground_values[0]
center_sensor = ground_values[1]
right_sensor = ground_values[2]
# 简单的PID控制逻辑
if center_sensor < 0.5: # 中心传感器在黑线上
# 直行
return base_speed, base_speed
elif left_sensor < 0.5: # 左侧传感器在黑线上
# 向左转
return -turn_speed, turn_speed
elif right_sensor < 0.5: # 右侧传感器在黑线上
# 向右转
return turn_speed, -turn_speed
else:
# 所有传感器都在白色区域,保持当前方向
return base_speed * 0.5, base_speed * 0.5
# 主控制循环
while robot.step(time_step) != -1:
# 读取地面传感器
ground_values = [sensor.getValue() for sensor in ground_sensors]
# 计算左右轮速度
left_speed, right_speed = line_following_control(ground_values)
# 设置电机速度
left_motor.setVelocity(left_speed)
right_motor.setVelocity(right_speed)
沿墙行驶是机器人探索未知环境的重要技能。E-puck机器人可以使用侧方距离传感器来保持与墙壁的适当距离,实现沿墙导航。
from controller import Robot
# 创建机器人实例
robot = Robot()
time_step = int(robot.getBasicTimeStep())
# 获取左右电机
left_motor = robot.getDevice("left_wheel_motor")
right_motor = robot.getDevice("right_wheel_motor")
left_motor.setPosition(float('inf'))
right_motor.setPosition(float('inf'))
# 获取侧方距离传感器
left_sensor = robot.getDevice("ps6") # 左侧传感器
right_sensor = robot.getDevice("ps2") # 右侧传感器
front_sensor = robot.getDevice("ps0") # 前方传感器
# 启用传感器
left_sensor.enable(time_step)
right_sensor.enable(time_step)
front_sensor.enable(time_step)
# 速度设置
base_speed = 2.0
turn_speed = 1.5
# 目标距离(与墙壁保持的距离)
target_distance = 80.0
def wall_following_control(left_dist, right_dist, front_dist):
"""沿墙行驶控制算法"""
# 检查前方是否有障碍物
if front_dist < 100:
# 前方有障碍物,停止并转向
return -turn_speed, turn_speed
# 沿墙行驶逻辑
if left_dist < target_distance - 20: # 左侧太近
# 向右转,远离左侧墙壁
return turn_speed, -turn_speed
elif left_dist > target_distance + 20: # 左侧太远
# 向左转,靠近左侧墙壁
return -turn_speed, turn_speed
else:
# 距离合适,直行
return base_speed, base_speed
# 主控制循环
while robot.step(time_step) != -1:
# 读取传感器
left_distance = left_sensor.getValue()
right_distance = right_sensor.getValue()
front_distance = front_sensor.getValue()
# 计算左右轮速度
left_speed, right_speed = wall_following_control(
left_distance, right_distance, front_distance
)
# 设置电机速度
left_motor.setVelocity(left_speed)
right_motor.setVelocity(right_speed)
路径规划是机器人导航的核心技术,它帮助机器人在复杂环境中找到从起点到目标点的最优路径。E-puck机器人可以使用多种算法来实现路径规划。
from controller import Robot
import math
class PathPlanner:
def __init__(self, robot):
self.robot = robot
self.time_step = int(robot.getBasicTimeStep())
# 获取电机和传感器
self.left_motor = robot.getDevice("left_wheel_motor")
self.right_motor = robot.getDevice("right_wheel_motor")
self.left_motor.setPosition(float('inf'))
self.right_motor.setPosition(float('inf'))
# 获取距离传感器
self.sensors = []
for i in range(8):
sensor = robot.getDevice(f"ps{i}")
sensor.enable(self.time_step)
self.sensors.append(sensor)
# 路径规划参数
self.target_x = 5.0 # 目标X坐标
self.target_z = 5.0 # 目标Z坐标
self.position_tolerance = 0.5 # 位置容差
def get_robot_position(self):
"""获取机器人当前位置(简化版本)"""
# 这里需要根据实际机器人实现位置获取
# 可以使用GPS传感器或里程计
return 0.0, 0.0 # 返回当前位置的x, z坐标
def calculate_heading_to_target(self, current_x, current_z):
"""计算朝向目标的角度"""
dx = self.target_x - current_x
dz = self.target_z - current_z
return math.atan2(dx, dz)
def get_obstacle_info(self):
"""获取障碍物信息"""
sensor_values = [sensor.getValue() for sensor in self.sensors]
# 检测前方障碍物
front_obstacle = min(sensor_values[0], sensor_values[1], sensor_values[7])
left_obstacle = sensor_values[6]
right_obstacle = sensor_values[2]
return front_obstacle, left_obstacle, right_obstacle
def navigate_to_target(self):
"""导航到目标点"""
while self.robot.step(self.time_step) != -1:
current_x, current_z = self.get_robot_position()
# 检查是否到达目标
distance_to_target = math.sqrt(
(self.target_x - current_x)**2 + (self.target_z - current_z)**2
)
if distance_to_target < self.position_tolerance:
print("到达目标点!")
self.stop_motors()
break
# 获取障碍物信息
front_dist, left_dist, right_dist = self.get_obstacle_info()
# 路径规划决策
if front_dist < 100: # 前方有障碍物
# 选择障碍物较少的一侧
if left_dist > right_dist:
self.turn_left()
else:
self.turn_right()
else:
# 计算朝向目标的角度
target_heading = self.calculate_heading_to_target(current_x, current_z)
# 这里需要实现转向控制逻辑
self.move_forward()
def move_forward(self):
"""前进"""
self.left_motor.setVelocity(2.0)
self.right_motor.setVelocity(2.0)
def turn_left(self):
"""左转"""
self.left_motor.setVelocity(-1.5)
self.right_motor.setVelocity(1.5)
def turn_right(self):
"""右转"""
self.left_motor.setVelocity(1.5)
self.right_motor.setVelocity(-1.5)
def stop_motors(self):
"""停止电机"""
self.left_motor.setVelocity(0.0)
self.right_motor.setVelocity(0.0)
# 使用示例
robot = Robot()
planner = PathPlanner(robot)
planner.navigate_to_target()
高级导航结合了多种技术,包括SLAM(同时定位与地图构建)、路径优化、动态避障等。E-puck机器人可以通过这些技术实现更加智能和高效的导航。
from controller import Robot
import math
import numpy as np
class AdvancedNavigator:
def __init__(self, robot):
self.robot = robot
self.time_step = int(robot.getBasicTimeStep())
# 获取设备
self.left_motor = robot.getDevice("left_wheel_motor")
self.right_motor = robot.getDevice("right_wheel_motor")
self.left_motor.setPosition(float('inf'))
self.right_motor.setPosition(float('inf'))
# 获取传感器
self.sensors = []
for i in range(8):
sensor = robot.getDevice(f"ps{i}")
sensor.enable(self.time_step)
self.sensors.append(sensor)
# 导航状态
self.navigation_state = "EXPLORING" # EXPLORING, NAVIGATING, AVOIDING
self.target_points = [(2, 2), (4, 2), (4, 4), (2, 4)] # 目标点列表
self.current_target_index = 0
# 地图数据(简化版本)
self.occupancy_grid = np.zeros((10, 10)) # 10x10网格地图
def update_occupancy_grid(self):
"""更新占用栅格地图"""
sensor_values = [sensor.getValue() for sensor in self.sensors]
# 根据传感器数据更新地图
# 这里简化处理,实际应用中需要更复杂的算法
for i, value in enumerate(sensor_values):
if value < 100: # 检测到障碍物
# 计算障碍物在地图中的位置
angle = i * math.pi / 4 # 传感器角度
distance = value / 1000.0 # 转换为米
# 更新地图(简化版本)
x = int(5 + distance * math.cos(angle))
z = int(5 + distance * math.sin(angle))
if 0 <= x < 10 and 0 <= z < 10:
self.occupancy_grid[x, z] = 1 # 标记为障碍物
def find_path_to_target(self, target_x, target_z):
"""简单的A*路径规划(简化版本)"""
# 这里实现简化的路径规划算法
# 实际应用中可以使用完整的A*算法
return [(0, 0), (target_x, target_z)] # 简化路径
def execute_navigation(self):
"""执行导航控制"""
if self.current_target_index >= len(self.target_points):
print("所有目标点已访问完成!")
return False
target_x, target_z = self.target_points[self.current_target_index]
# 更新地图
self.update_occupancy_grid()
# 检查是否到达当前目标
current_pos = self.get_robot_position()
distance_to_target = math.sqrt(
(target_x - current_pos[0])**2 + (target_z - current_pos[1])**2
)
if distance_to_target < 0.5:
print(f"到达目标点 {self.current_target_index + 1}")
self.current_target_index += 1
return True
# 执行导航
self.navigate_to_point(target_x, target_z)
return True
def navigate_to_point(self, target_x, target_z):
"""导航到指定点"""
current_pos = self.get_robot_position()
# 计算朝向目标的角度
dx = target_x - current_pos[0]
dz = target_z - current_pos[1]
target_angle = math.atan2(dx, dz)
# 获取障碍物信息
front_dist = min(self.sensors[0].getValue(), self.sensors[1].getValue())
if front_dist < 80: # 前方有障碍物
# 避障
self.avoid_obstacle()
else:
# 朝向目标
self.turn_towards_target(target_angle)
self.move_forward()
def avoid_obstacle(self):
"""避障行为"""
left_dist = self.sensors[6].getValue()
right_dist = self.sensors[2].getValue()
if left_dist > right_dist:
self.turn_left()
else:
self.turn_right()
def turn_towards_target(self, target_angle):
"""转向目标角度"""
# 这里需要实现角度控制逻辑
pass
def move_forward(self):
"""前进"""
self.left_motor.setVelocity(2.0)
self.right_motor.setVelocity(2.0)
def turn_left(self):
"""左转"""
self.left_motor.setVelocity(-1.5)
self.right_motor.setVelocity(1.5)
def turn_right(self):
"""右转"""
self.left_motor.setVelocity(1.5)
self.right_motor.setVelocity(-1.5)
def get_robot_position(self):
"""获取机器人位置(简化版本)"""
return 0.0, 0.0 # 实际应用中需要真实位置
# 使用示例
robot = Robot()
navigator = AdvancedNavigator(robot)
while robot.step(32) != -1:
if not navigator.execute_navigation():
break
群体行为研究多个机器人如何协同工作,实现复杂的集体任务。E-puck机器人非常适合群体行为研究,因为它们体积小、成本低、易于控制。
from controller import Robot
import math
import random
class SwarmRobot:
def __init__(self, robot, robot_id):
self.robot = robot
self.robot_id = robot_id
self.time_step = int(robot.getBasicTimeStep())
# 获取设备
self.left_motor = robot.getDevice("left_wheel_motor")
self.right_motor = robot.getDevice("right_wheel_motor")
self.left_motor.setPosition(float('inf'))
self.right_motor.setPosition(float('inf'))
# 获取传感器
self.sensors = []
for i in range(8):
sensor = robot.getDevice(f"ps{i}")
sensor.enable(self.time_step)
self.sensors.append(sensor)
# 群体行为参数
self.separation_distance = 0.3 # 分离距离
self.alignment_strength = 0.5 # 对齐强度
self.cohesion_strength = 0.3 # 凝聚强度
# 机器人状态
self.position = [0, 0, 0]
self.velocity = [0, 0, 0]
self.heading = 0
def update_position(self):
"""更新机器人位置(简化版本)"""
# 实际应用中需要从GPS或里程计获取
pass
def get_neighbor_info(self):
"""获取邻居机器人信息(简化版本)"""
# 实际应用中需要通信模块
return [] # 返回邻居信息列表
def calculate_flocking_forces(self):
"""计算群体行为力"""
neighbors = self.get_neighbor_info()
if not neighbors:
return 0, 0 # 没有邻居,返回零力
# 分离力(避免碰撞)
separation_force_x = 0
separation_force_z = 0
# 对齐力(与邻居保持相同方向)
alignment_force = 0
# 凝聚力(向邻居中心移动)
cohesion_force_x = 0
cohesion_force_z = 0
neighbor_count = len(neighbors)
for neighbor in neighbors:
# 计算分离力
dx = self.position[0] - neighbor['x']
dz = self.position[2] - neighbor['z']
distance = math.sqrt(dx*dx + dz*dz)
if distance < self.separation_distance and distance > 0:
# 分离力与距离成反比
force = (self.separation_distance - distance) / distance
separation_force_x += dx * force
separation_force_z += dz * force
# 计算对齐力
alignment_force += neighbor['heading']
# 计算凝聚力
cohesion_force_x += neighbor['x']
cohesion_force_z += neighbor['z']
# 平均化
if neighbor_count > 0:
alignment_force /= neighbor_count
cohesion_force_x /= neighbor_count
cohesion_force_z /= neighbor_count
# 计算凝聚力(指向邻居中心)
cohesion_force_x = (cohesion_force_x - self.position[0]) * self.cohesion_strength
cohesion_force_z = (cohesion_force_z - self.position[2]) * self.cohesion_strength
# 综合力
total_force_x = separation_force_x + cohesion_force_x
total_force_z = separation_force_z + cohesion_force_z
return total_force_x, total_force_z
def execute_swarm_behavior(self):
"""执行群体行为"""
# 更新位置
self.update_position()
# 计算群体行为力
force_x, force_z = self.calculate_flocking_forces()
# 获取障碍物信息
front_dist = min(self.sensors[0].getValue(), self.sensors[1].getValue())
if front_dist < 100: # 前方有障碍物
# 避障
self.avoid_obstacle()
else:
# 应用群体行为力
self.apply_swarm_forces(force_x, force_z)
def apply_swarm_forces(self, force_x, force_z):
"""应用群体行为力"""
# 将力转换为电机控制
# 这里简化处理,实际应用中需要更复杂的控制算法
# 计算转向角度
target_heading = math.atan2(force_x, force_z)
heading_diff = target_heading - self.heading
# 标准化角度差
while heading_diff > math.pi:
heading_diff -= 2 * math.pi
while heading_diff < -math.pi:
heading_diff += 2 * math.pi
# 根据角度差控制转向
if abs(heading_diff) > 0.1:
if heading_diff > 0:
self.turn_right()
else:
self.turn_left()
else:
self.move_forward()
def avoid_obstacle(self):
"""避障行为"""
left_dist = self.sensors[6].getValue()
right_dist = self.sensors[2].getValue()
if left_dist > right_dist:
self.turn_left()
else:
self.turn_right()
def move_forward(self):
"""前进"""
self.left_motor.setVelocity(2.0)
self.right_motor.setVelocity(2.0)
def turn_left(self):
"""左转"""
self.left_motor.setVelocity(-1.5)
self.right_motor.setVelocity(1.5)
def turn_right(self):
"""右转"""
self.left_motor.setVelocity(1.5)
self.right_motor.setVelocity(-1.5)
# 使用示例
robot = Robot()
swarm_robot = SwarmRobot(robot, 1)
while robot.step(32) != -1:
swarm_robot.execute_swarm_behavior()
参数优化是提高机器人性能的关键技术。通过系统性地调整控制参数,可以找到最优的机器人行为配置。
from controller import Robot
import math
import random
import numpy as np
class ParameterOptimizer:
def __init__(self, robot):
self.robot = robot
self.time_step = int(robot.getBasicTimeStep())
# 获取设备
self.left_motor = robot.getDevice("left_wheel_motor")
self.right_motor = robot.getDevice("right_wheel_motor")
self.left_motor.setPosition(float('inf'))
self.right_motor.setPosition(float('inf'))
# 获取传感器
self.sensors = []
for i in range(8):
sensor = robot.getDevice(f"ps{i}")
sensor.enable(self.time_step)
self.sensors.append(sensor)
# 优化参数
self.parameters = {
'speed': 2.0,
'turn_rate': 1.5,
'obstacle_threshold': 100,
'separation_distance': 0.3,
'alignment_strength': 0.5,
'cohesion_strength': 0.3
}
# 优化历史
self.optimization_history = []
def evaluate_performance(self, params):
"""评估参数性能"""
# 设置参数
self.parameters.update(params)
# 运行测试(简化版本)
test_duration = 30 # 30秒测试
start_time = self.robot.getTime()
total_distance = 0
collision_count = 0
smoothness_score = 0
while self.robot.getTime() - start_time < test_duration:
if self.robot.step(self.time_step) == -1:
break
# 执行控制
self.execute_control()
# 计算性能指标
# 这里简化处理,实际应用中需要更复杂的计算
total_distance += 0.1 # 假设每步移动0.1米
# 检查碰撞
if self.check_collision():
collision_count += 1
# 计算平滑度
smoothness_score += self.calculate_smoothness()
# 综合性能评分
performance_score = (
total_distance * 0.4 + # 距离权重40%
(1.0 / (1 + collision_count)) * 0.3 + # 安全性权重30%
smoothness_score * 0.3 # 平滑度权重30%
)
return performance_score, {
'distance': total_distance,
'collisions': collision_count,
'smoothness': smoothness_score
}
def execute_control(self):
"""执行控制逻辑"""
# 获取传感器数据
sensor_values = [sensor.getValue() for sensor in self.sensors]
front_dist = min(sensor_values[0], sensor_values[1])
# 避障控制
if front_dist < self.parameters['obstacle_threshold']:
self.avoid_obstacle()
else:
self.move_forward()
def avoid_obstacle(self):
"""避障行为"""
left_dist = self.sensors[6].getValue()
right_dist = self.sensors[2].getValue()
if left_dist > right_dist:
self.turn_left()
else:
self.turn_right()
def move_forward(self):
"""前进"""
speed = self.parameters['speed']
self.left_motor.setVelocity(speed)
self.right_motor.setVelocity(speed)
def turn_left(self):
"""左转"""
turn_rate = self.parameters['turn_rate']
self.left_motor.setVelocity(-turn_rate)
self.right_motor.setVelocity(turn_rate)
def turn_right(self):
"""右转"""
turn_rate = self.parameters['turn_rate']
self.left_motor.setVelocity(turn_rate)
self.right_motor.setVelocity(-turn_rate)
def check_collision(self):
"""检查碰撞(简化版本)"""
# 实际应用中需要更复杂的碰撞检测
return False
def calculate_smoothness(self):
"""计算运动平滑度(简化版本)"""
# 实际应用中需要计算加速度变化等指标
return 1.0
def genetic_algorithm_optimization(self, generations=50, population_size=20):
"""遗传算法优化"""
# 初始化种群
population = self.initialize_population(population_size)
for generation in range(generations):
print(f"第 {generation + 1} 代优化...")
# 评估种群
fitness_scores = []
for individual in population:
score, metrics = self.evaluate_performance(individual)
fitness_scores.append(score)
# 记录优化历史
self.optimization_history.append({
'generation': generation,
'parameters': individual.copy(),
'score': score,
'metrics': metrics
})
# 选择优秀个体
selected = self.selection(population, fitness_scores)
# 交叉和变异
new_population = []
while len(new_population) < population_size:
parent1, parent2 = random.sample(selected, 2)
child1, child2 = self.crossover(parent1, parent2)
child1 = self.mutate(child1)
child2 = self.mutate(child2)
new_population.extend([child1, child2])
population = new_population[:population_size]
# 输出当前最佳结果
best_score = max(fitness_scores)
best_index = fitness_scores.index(best_score)
best_params = population[best_index]
print(f"最佳分数: {best_score:.3f}")
print(f"最佳参数: {best_params}")
return self.get_best_parameters()
def initialize_population(self, size):
"""初始化种群"""
population = []
for _ in range(size):
individual = {}
for param, value in self.parameters.items():
if isinstance(value, float):
# 在参数值附近随机变化
individual[param] = value * random.uniform(0.5, 1.5)
else:
individual[param] = value
population.append(individual)
return population
def selection(self, population, fitness_scores):
"""选择操作"""
# 锦标赛选择
selected = []
for _ in range(len(population)):
tournament = random.sample(range(len(population)), 3)
winner = max(tournament, key=lambda i: fitness_scores[i])
selected.append(population[winner])
return selected
def crossover(self, parent1, parent2):
"""交叉操作"""
child1 = parent1.copy()
child2 = parent2.copy()
# 随机选择交叉点
crossover_point = random.random()
for param in self.parameters:
if random.random() < crossover_point:
child1[param], child2[param] = child2[param], child1[param]
return child1, child2
def mutate(self, individual):
"""变异操作"""
for param in individual:
if random.random() < 0.1: # 10%变异概率
if isinstance(individual[param], float):
individual[param] *= random.uniform(0.8, 1.2)
return individual
def get_best_parameters(self):
"""获取最佳参数"""
if not self.optimization_history:
return self.parameters
best_record = max(self.optimization_history, key=lambda x: x['score'])
return best_record['parameters']
# 使用示例
robot = Robot()
optimizer = ParameterOptimizer(robot)
# 运行遗传算法优化
best_params = optimizer.genetic_algorithm_optimization(generations=20, population_size=10)
print(f"优化完成!最佳参数: {best_params}")
E-puck机器人在实际应用中有广泛的用途,从教育研究到工业应用,都可以看到它的身影。
恭喜你完成了E-puck机器人学习教程!通过本教程,你已经掌握了从基础运动控制到高级导航的完整技能体系。
E-puck机器人是一个优秀的学习平台,通过本教程的学习,你已经具备了机器人编程的坚实基础。希望你能继续探索机器人技术的奥秘,创造出更多有趣和有用的应用!