本教程将详细介绍如何在Webots中使用数值优化方法。数值优化是机器人学中的重要技术,可以用来优化机器人的步态、行为参数、路径规划等。你将学习不同的优化方法架构、机器人重置策略,以及如何实现各种优化算法。
在Webots中使用优化算法有多种方法,大多数方法都依赖于Supervisor controller。数值优化通常可以分解为两个独立的任务:
一个重要的决策是这两个不同的任务应该在同一个控制器中实现,还是在两个独立的控制器中实现。让我们讨论这两种方法:
如果你的仿真一次只需要评估一个机器人,例如优化人形机器人的运动步态或单个机器人的行为,那么可以将两个任务都实现在同一个控制器中,这会使代码更简单。
from controller import Robot, Supervisor
import math
TIME_STEP = 5
def reset_robot():
"""重置机器人到初始位置"""
# 获取机器人节点和位置字段
robot_node = supervisor.getFromDef("MY_ROBOT")
trans_field = robot_node.getField("translation")
# 重置位置
initial_trans = [0, 0.5, 0]
trans_field.setSFVec3f(initial_trans)
supervisor.simulationResetPhysics()
def actuate_motors(a, b, time):
"""根据参数a、b和时间驱动电机"""
# 这里实现具体的电机控制逻辑
# 例如:正弦波运动模式
position = a * math.sin(b * time)
# 获取电机并设置位置
motor = robot.getDevice("my_motor")
motor.setPosition(position)
def compute_fitness():
"""计算适应度函数"""
# 获取机器人当前位置
robot_node = supervisor.getFromDef("MY_ROBOT")
trans_field = robot_node.getField("translation")
position = trans_field.getSFVec3f()
# 计算移动距离作为适应度
distance = math.sqrt(position[0]**2 + position[2]**2)
return distance
# 主程序
robot = Robot()
supervisor = Supervisor()
for a in [x * 0.1 for x in range(5, 100)]: # a从0.5到9.9
for b in [x * 0.5 for x in range(1, 10)]: # b从0.5到4.5
reset_robot() # 重置机器人到初始位置
# 运行机器人仿真30秒
time = 0.0
while time < 30.0:
actuate_motors(a, b, time)
if robot.step(TIME_STEP) == -1:
break
time += TIME_STEP / 1000.0
# 计算并打印适应度
fitness = compute_fitness()
print(f"参数: a={a:.1f}, b={b:.1f}, 适应度: {fitness:.3f}")
相反,如果你的仿真需要同时执行多个机器人,例如群体机器人学,建议使用两种不同类型的控制器:一个用于优化算法,一个用于机器人行为。优化算法应该在Supervisor controller中,而机器人行为可以在常规(非Supervisor)控制器中。
from controller import Supervisor, Emitter
import random
class GeneticOptimizer:
def __init__(self):
self.supervisor = Supervisor()
self.emitter = self.supervisor.getDevice("emitter")
# 遗传算法参数
self.population_size = 20
self.genome_size = 10
self.generation = 0
self.population = []
self.fitness_scores = []
# 初始化种群
self.initialize_population()
def initialize_population():
"""初始化随机种群"""
self.population = []
for i in range(self.population_size):
genome = [random.uniform(-1, 1) for _ in range(self.genome_size)]
self.population.append(genome)
def send_genome_to_robots(self, genome):
"""发送基因型到机器人控制器"""
# 将基因型编码为字符串
genome_str = ",".join([str(g) for g in genome])
message = f"GENOME:{genome_str}"
# 广播给所有机器人
self.emitter.send(message.encode('utf-8'))
def evaluate_population(self):
"""评估当前种群"""
for i, genome in enumerate(self.population):
print(f"评估个体 {i+1}/{self.population_size}")
# 发送基因型给机器人
self.send_genome_to_robots(genome)
# 等待机器人完成评估
self.wait_for_evaluation_complete()
# 接收适应度分数
fitness = self.receive_fitness_from_robots()
self.fitness_scores.append(fitness)
def wait_for_evaluation_complete(self):
"""等待机器人完成评估"""
evaluation_time = 30.0 # 30秒评估时间
start_time = self.supervisor.getTime()
while (self.supervisor.getTime() - start_time) < evaluation_time:
if self.supervisor.step(32) == -1:
break
def receive_fitness_from_robots(self):
"""从机器人接收适应度分数"""
# 这里简化处理,实际应用中需要通过Receiver接收
# 可以根据机器人的最终位置计算适应度
robot_node = self.supervisor.getFromDef("ROBOT_1")
trans_field = robot_node.getField("translation")
position = trans_field.getSFVec3f()
# 计算距离作为适应度
fitness = (position[0]**2 + position[2]**2)**0.5
return fitness
def select_and_reproduce(self):
"""选择和繁殖操作"""
# 简单的轮盘赌选择
total_fitness = sum(self.fitness_scores)
new_population = []
for _ in range(self.population_size):
# 选择父代
r = random.uniform(0, total_fitness)
cumsum = 0
for i, fitness in enumerate(self.fitness_scores):
cumsum += fitness
if cumsum >= r:
parent = self.population[i][:]
# 简单变异
for j in range(len(parent)):
if random.random() < 0.1: # 10% 变异率
parent[j] += random.uniform(-0.1, 0.1)
parent[j] = max(-1, min(1, parent[j])) # 限制范围
new_population.append(parent)
break
self.population = new_population
self.fitness_scores = []
def run_optimization(self):
"""运行优化过程"""
max_generations = 50
for generation in range(max_generations):
print(f"第 {generation+1} 代")
self.evaluate_population()
# 打印最佳适应度
best_fitness = max(self.fitness_scores)
print(f"最佳适应度: {best_fitness:.3f}")
self.select_and_reproduce()
# 运行优化器
if __name__ == "__main__":
optimizer = GeneticOptimizer()
optimizer.run_optimization()
from controller import Robot, Receiver, Motor, DistanceSensor
import math
class RobotController:
def __init__(self):
self.robot = Robot()
self.receiver = self.robot.getDevice("receiver")
self.receiver.enable(32)
# 获取传感器和执行器
self.left_sensor = self.robot.getDevice("left_sensor")
self.right_sensor = self.robot.getDevice("right_sensor")
self.left_sensor.enable(32)
self.right_sensor.enable(32)
self.left_motor = self.robot.getDevice("left_motor")
self.right_motor = self.robot.getDevice("right_motor")
self.left_motor.setPosition(float('inf'))
self.right_motor.setPosition(float('inf'))
self.genome = None
self.evaluation_active = False
def receive_genome(self):
"""接收来自Supervisor controller的基因型"""
if self.receiver.getQueueLength() > 0:
message = self.receiver.getData().decode('utf-8')
self.receiver.nextPacket()
if message.startswith("GENOME:"):
genome_str = message[7:] # 去掉"GENOME:"前缀
self.genome = [float(x) for x in genome_str.split(",")]
self.evaluation_active = True
print(f"收到基因型: {self.genome[:3]}...") # 只打印前3个基因
def compute_motor_speeds(self, left_dist, right_dist):
"""根据基因型和传感器数据计算电机速度"""
if self.genome is None:
return 0.0, 0.0
# 使用基因型作为神经网络权重
# 简化的行为:避障 + 基因型影响
# 归一化传感器值
left_norm = left_dist / 1000.0
right_norm = right_dist / 1000.0
# 使用基因型计算行为
left_speed = (self.genome[0] * left_norm +
self.genome[1] * right_norm +
self.genome[2]) * 6.0
right_speed = (self.genome[3] * left_norm +
self.genome[4] * right_norm +
self.genome[5]) * 6.0
# 限制速度范围
left_speed = max(-6.0, min(6.0, left_speed))
right_speed = max(-6.0, min(6.0, right_speed))
return left_speed, right_speed
def run(self):
"""主运行循环"""
while self.robot.step(32) != -1:
# 检查是否收到新的基因型
self.receive_genome()
if self.evaluation_active and self.genome is not None:
# 读取传感器
left_dist = self.left_sensor.getValue()
right_dist = self.right_sensor.getValue()
# 计算电机速度
left_speed, right_speed = self.compute_motor_speeds(left_dist, right_dist)
# 设置电机速度
self.left_motor.setVelocity(left_speed)
self.right_motor.setVelocity(right_speed)
# 运行Robot controller
if __name__ == "__main__":
controller = RobotController()
controller.run()
在使用优化算法时,你可能需要在每次适应度评估之前或之后重置机器人。有几种重置机器人的方法:
你可以使用Supervisor controller字段设置函数和物理重置功能轻松重置机器人的位置、方向和物理状态:
from controller import Supervisor
def reset_robot_position(supervisor):
"""使用字段设置重置机器人位置和方向"""
# 获取机器人节点的translation和rotation字段句柄
robot_node = supervisor.getFromDef("MY_ROBOT")
trans_field = robot_node.getField("translation")
rot_field = robot_node.getField("rotation")
# 重置机器人位置和方向
initial_trans = [0, 0.5, 0] # 初始位置
initial_rot = [0, 1, 0, 1.5708] # 初始方向 (90度绕Y轴)
trans_field.setSFVec3f(initial_trans)
rot_field.setSFRotation(initial_rot)
# 重置物理状态
supervisor.simulationResetPhysics()
print("机器人已重置到初始位置")
def reset_motor_positions(robot):
"""重置电机位置"""
# 获取所有电机
left_motor = robot.getDevice("left_motor")
right_motor = robot.getDevice("right_motor")
# 重置电机位置
left_motor.setPosition(0.0)
right_motor.setPosition(0.0)
print("电机位置已重置")
# 使用示例
supervisor = Supervisor()
# 优化循环
for parameter_set in parameter_combinations:
# 重置机器人
reset_robot_position(supervisor)
reset_motor_positions(supervisor)
# 运行评估
run_evaluation(parameter_set)
# 计算适应度
fitness = compute_fitness()
print(f"参数 {parameter_set}, 适应度: {fitness}")
这个函数会从头开始重启物理仿真和所有控制器。使用这种方法,包括物理、电机位置和控制器在内的所有内容都会被重置。但是这个函数也会重启调用它的控制器(通常是运行优化算法的控制器),因此优化状态会丢失。
from controller import Supervisor
import pickle
import os
import sys
class OptimizationState:
def __init__(self):
self.current_parameters = None
self.current_generation = 0
self.population = []
self.fitness_scores = []
self.best_fitness = 0.0
self.evaluation_count = 0
def save_optimization_state(state, filename="optimization_state.pkl"):
"""保存完整的优化状态到文件"""
try:
with open(filename, 'wb') as f:
pickle.dump(state, f)
print(f"优化状态已保存到 {filename}")
except Exception as e:
print(f"保存状态失败: {e}")
def load_optimization_state(filename="optimization_state.pkl"):
"""从文件加载优化状态"""
if os.path.exists(filename):
try:
with open(filename, 'rb') as f:
state = pickle.load(f)
print(f"优化状态已从 {filename} 加载")
return state
except Exception as e:
print(f"加载状态失败: {e}")
# 如果文件不存在或加载失败,返回新状态
return OptimizationState()
def run_robot_evaluation(supervisor, parameters):
"""运行机器人评估"""
print(f"评估参数: {parameters}")
# 运行机器人30秒
time = 0.0
while time < 30.0:
# 这里实现具体的机器人控制逻辑
# 使用parameters影响机器人行为
if supervisor.step(32) == -1:
break
time += 32 / 1000.0
# 计算适应度
robot_node = supervisor.getFromDef("MY_ROBOT")
trans_field = robot_node.getField("translation")
position = trans_field.getSFVec3f()
fitness = (position[0]**2 + position[2]**2)**0.5
return fitness
def get_next_parameters(state):
"""获取下一组评估参数"""
# 这里实现你的优化算法逻辑
# 例如:随机搜索、遗传算法、粒子群优化等
if state.evaluation_count < 100: # 评估100组参数
# 简单随机搜索示例
import random
parameters = [random.uniform(-1, 1) for _ in range(5)]
state.current_parameters = parameters
state.evaluation_count += 1
return parameters
else:
return None # 优化完成
def evaluate_next_parameters(supervisor, state):
"""评估下一组参数"""
parameters = get_next_parameters(state)
if parameters is None:
print("优化完成!")
return False
# 运行机器人评估
fitness = run_robot_evaluation(supervisor, parameters)
# 存储结果
state.fitness_scores.append(fitness)
if fitness > state.best_fitness:
state.best_fitness = fitness
print(f"新的最佳适应度: {fitness:.3f}")
# 保存完整优化状态
save_optimization_state(state)
# 开始下一次评估
supervisor.worldReload()
supervisor.step(32)
sys.exit(0) # 终止当前进程
def main():
supervisor = Supervisor()
# 重新加载完整优化状态
state = load_optimization_state()
print(f"继续优化,当前评估次数: {state.evaluation_count}")
if state.evaluation_count > 0:
print(f"当前最佳适应度: {state.best_fitness:.3f}")
# 评估下一组参数
if not evaluate_next_parameters(supervisor, state):
print("所有评估已完成")
# 打印最终结果
print(f"最终最佳适应度: {state.best_fitness:.3f}")
print(f"总评估次数: {state.evaluation_count}")
if __name__ == "__main__":
main()
与worldReload()函数类似,worldReset()函数也会重置物理仿真。但是,它不会重启控制器。这种方法的优势是可以使用nodeRestartController()函数选择性地重启所需的控制器。通常,你会重启Robot controller但不重启Supervisor controller,因此不需要Supervisor controller保存和恢复优化状态。
from controller import Supervisor
import random
class WorldResetOptimizer:
def __init__(self):
self.supervisor = Supervisor()
self.robot_node = self.supervisor.getFromDef("MY_ROBOT")
# 优化参数
self.current_generation = 0
self.max_generations = 50
self.population_size = 20
self.population = []
self.fitness_scores = []
# 初始化种群
self.initialize_population()
def initialize_population(self):
"""初始化随机种群"""
self.population = []
for _ in range(self.population_size):
# 创建随机参数向量
individual = [random.uniform(-1, 1) for _ in range(8)]
self.population.append(individual)
print(f"初始化了 {self.population_size} 个个体的种群")
def reset_simulation(self):
"""重置仿真环境"""
# 重置世界物理状态
self.supervisor.worldReset()
# 选择性重启机器人控制器(但不重启Supervisor controller)
self.supervisor.nodeRestartController(self.robot_node)
# 等待重置完成
self.supervisor.step(32)
print("仿真环境已重置")
def send_parameters_to_robot(self, parameters):
"""发送参数给Robot controller"""
# 这里可以使用Emitter发送参数
# 或者写入文件供Robot controller读取
# 为简化,我们假设通过某种方式传递了参数
pass
def evaluate_individual(self, individual):
"""评估单个个体"""
print(f"评估个体: {individual[:3]}...") # 只显示前3个参数
# 重置仿真
self.reset_simulation()
# 发送参数给机器人
self.send_parameters_to_robot(individual)
# 让机器人运行30秒
evaluation_time = 30.0
start_time = self.supervisor.getTime()
while (self.supervisor.getTime() - start_time) < evaluation_time:
if self.supervisor.step(32) == -1:
break
# 计算适应度
fitness = self.calculate_fitness()
print(f"适应度: {fitness:.3f}")
return fitness
def calculate_fitness(self):
"""计算适应度函数"""
# 获取机器人最终位置
trans_field = self.robot_node.getField("translation")
position = trans_field.getSFVec3f()
# 距离起点的距离作为适应度
distance = (position[0]**2 + position[2]**2)**0.5
# 可以加入其他适应度指标
# 例如:避免碰撞、能耗等
return distance
def selection(self):
"""选择操作"""
# 找到最佳个体
best_indices = sorted(range(len(self.fitness_scores)),
key=lambda i: self.fitness_scores[i],
reverse=True)
# 选择前50%作为父代
elite_count = self.population_size // 2
elite_population = [self.population[i] for i in best_indices[:elite_count]]
return elite_population
def crossover_and_mutation(self, elite_population):
"""交叉和变异操作"""
new_population = elite_population[:] # 保留精英
# 生成新个体直到达到种群大小
while len(new_population) < self.population_size:
# 随机选择两个父代
parent1 = random.choice(elite_population)
parent2 = random.choice(elite_population)
# 简单的单点交叉
crossover_point = random.randint(1, len(parent1) - 1)
child = parent1[:crossover_point] + parent2[crossover_point:]
# 变异
for i in range(len(child)):
if random.random() < 0.1: # 10% 变异率
child[i] += random.uniform(-0.2, 0.2)
child[i] = max(-1, min(1, child[i])) # 限制范围
new_population.append(child)
return new_population
def run_optimization(self):
"""运行完整的优化过程"""
print("开始遗传算法优化...")
for generation in range(self.max_generations):
print(f"\n=== 第 {generation + 1} 代 ===")
# 评估当前种群
self.fitness_scores = []
for i, individual in enumerate(self.population):
print(f"个体 {i + 1}/{self.population_size}")
fitness = self.evaluate_individual(individual)
self.fitness_scores.append(fitness)
# 输出统计信息
best_fitness = max(self.fitness_scores)
avg_fitness = sum(self.fitness_scores) / len(self.fitness_scores)
print(f"最佳适应度: {best_fitness:.3f}")
print(f"平均适应度: {avg_fitness:.3f}")
# 选择、交叉和变异
elite_population = self.selection()
self.population = self.crossover_and_mutation(elite_population)
print(f"\n优化完成!最终最佳适应度: {max(self.fitness_scores):.3f}")
# 运行优化器
if __name__ == "__main__":
optimizer = WorldResetOptimizer()
optimizer.run_optimization()
最后一种方法是为每次参数评估启动和退出Webots程序。虽然这听起来像是开销,但实际上Webots的启动时间通常比评估控制器所需的时间短得多,所以这种方法是完全合理的。
#!/usr/bin/env python3
"""
外部优化程序 - 通过启动和停止Webots进行优化
"""
import subprocess
import random
import json
import os
import time
class ExternalOptimizer:
def __init__(self):
self.webots_path = "webots" # Webots可执行文件路径
self.world_file = "my_optimization_world.wbt"
self.genotype_file = "genotype.json"
self.fitness_file = "fitness.json"
# 优化参数
self.population_size = 20
self.generations = 30
self.genome_size = 8
# 种群和适应度
self.population = []
self.fitness_scores = []
# 初始化种群
self.initialize_population()
def initialize_population(self):
"""初始化随机种群"""
self.population = []
for _ in range(self.population_size):
genome = [random.uniform(-1, 1) for _ in range(self.genome_size)]
self.population.append(genome)
print(f"初始化了 {self.population_size} 个个体的种群")
def write_genotype_file(self, genotype):
"""写入基因型到文件"""
with open(self.genotype_file, 'w') as f:
json.dump(genotype, f)
def read_fitness_file(self):
"""从文件读取适应度"""
if os.path.exists(self.fitness_file):
with open(self.fitness_file, 'r') as f:
return json.load(f)
return 0.0
def run_webots_evaluation(self, genotype):
"""运行Webots评估单个基因型"""
print(f"评估基因型: {genotype[:3]}...")
# 写入基因型文件
self.write_genotype_file(genotype)
# 删除旧的适应度文件
if os.path.exists(self.fitness_file):
os.remove(self.fitness_file)
# 启动Webots
cmd = [self.webots_path, "--mode=fast", self.world_file]
try:
# 运行Webots并等待完成
result = subprocess.run(cmd,
timeout=60, # 60秒超时
capture_output=True,
text=True)
if result.returncode == 0:
# 成功完成,读取适应度
fitness = self.read_fitness_file()
print(f"适应度: {fitness:.3f}")
return fitness
else:
print(f"Webots执行失败: {result.stderr}")
return 0.0
except subprocess.TimeoutExpired:
print("Webots执行超时")
return 0.0
except Exception as e:
print(f"运行Webots时出错: {e}")
return 0.0
def evaluate_population(self):
"""评估整个种群"""
self.fitness_scores = []
for i, individual in enumerate(self.population):
print(f"个体 {i + 1}/{self.population_size}")
fitness = self.run_webots_evaluation(individual)
self.fitness_scores.append(fitness)
# 短暂延迟避免文件系统问题
time.sleep(0.5)
def genetic_operations(self):
"""遗传算法操作:选择、交叉、变异"""
# 选择:保留最佳个体
fitness_pairs = list(zip(self.fitness_scores, self.population))
fitness_pairs.sort(key=lambda x: x[0], reverse=True)
# 保留前50%
elite_count = self.population_size // 2
elite = [individual for _, individual in fitness_pairs[:elite_count]]
# 生成新种群
new_population = elite[:] # 精英保留
while len(new_population) < self.population_size:
# 选择父代
parent1 = random.choice(elite)
parent2 = random.choice(elite)
# 交叉
crossover_point = random.randint(1, self.genome_size - 1)
child = parent1[:crossover_point] + parent2[crossover_point:]
# 变异
for j in range(len(child)):
if random.random() < 0.15: # 15% 变异率
child[j] += random.uniform(-0.3, 0.3)
child[j] = max(-1, min(1, child[j])) # 限制范围
new_population.append(child)
self.population = new_population
def run_optimization(self):
"""运行完整的优化过程"""
print("开始外部优化过程...")
print(f"种群大小: {self.population_size}")
print(f"世代数: {self.generations}")
print(f"基因组大小: {self.genome_size}")
best_fitness_history = []
for generation in range(self.generations):
print(f"\n=== 第 {generation + 1} 代 ===")
# 评估种群
self.evaluate_population()
# 统计信息
best_fitness = max(self.fitness_scores)
avg_fitness = sum(self.fitness_scores) / len(self.fitness_scores)
best_fitness_history.append(best_fitness)
print(f"最佳适应度: {best_fitness:.3f}")
print(f"平均适应度: {avg_fitness:.3f}")
# 遗传操作(最后一代不需要)
if generation < self.generations - 1:
self.genetic_operations()
# 输出最终结果
print(f"\n优化完成!")
print(f"最终最佳适应度: {max(best_fitness_history):.3f}")
# 保存结果
self.save_results(best_fitness_history)
def save_results(self, fitness_history):
"""保存优化结果"""
results = {
"best_fitness_history": fitness_history,
"final_population": self.population,
"final_fitness_scores": self.fitness_scores
}
with open("optimization_results.json", 'w') as f:
json.dump(results, f, indent=2)
print("结果已保存到 optimization_results.json")
if __name__ == "__main__":
optimizer = ExternalOptimizer()
optimizer.run_optimization()
from controller import Robot, Supervisor, DistanceSensor, Motor
import json
import sys
import math
def load_genotype(filename="genotype.json"):
"""从文件加载基因型"""
try:
with open(filename, 'r') as f:
return json.load(f)
except Exception as e:
print(f"加载基因型失败: {e}")
return [0.0] * 8 # 默认基因型
def save_fitness(fitness, filename="fitness.json"):
"""保存适应度到文件"""
try:
with open(filename, 'w') as f:
json.dump(fitness, f)
print(f"适应度已保存: {fitness:.3f}")
except Exception as e:
print(f"保存适应度失败: {e}")
def compute_fitness(supervisor):
"""计算适应度函数"""
# 获取机器人最终位置
robot_node = supervisor.getFromDef("MY_ROBOT")
trans_field = robot_node.getField("translation")
position = trans_field.getSFVec3f()
# 计算移动距离
distance = math.sqrt(position[0]**2 + position[2]**2)
# 可以添加更复杂的适应度计算
# 例如:避免碰撞、路径效率等
return distance
def run_robot_behavior(robot, genotype):
"""使用基因型控制机器人行为"""
# 获取传感器和电机
left_sensor = robot.getDevice("left_sensor")
right_sensor = robot.getDevice("right_sensor")
left_sensor.enable(32)
right_sensor.enable(32)
left_motor = robot.getDevice("left_motor")
right_motor = robot.getDevice("right_motor")
left_motor.setPosition(float('inf'))
right_motor.setPosition(float('inf'))
# 使用基因型作为神经网络权重
def compute_motor_speeds(left_dist, right_dist):
# 归一化传感器输入
left_norm = left_dist / 1000.0
right_norm = right_dist / 1000.0
# 使用基因型计算输出
left_speed = (genotype[0] * left_norm +
genotype[1] * right_norm +
genotype[2]) * 6.0
right_speed = (genotype[3] * left_norm +
genotype[4] * right_norm +
genotype[5]) * 6.0
# 限制速度范围
left_speed = max(-6.0, min(6.0, left_speed))
right_speed = max(-6.0, min(6.0, right_speed))
return left_speed, right_speed
# 运行机器人30秒
TIME_STEP = 32
evaluation_time = 30.0
current_time = 0.0
while current_time < evaluation_time:
# 读取传感器
left_dist = left_sensor.getValue()
right_dist = right_sensor.getValue()
# 计算电机速度
left_speed, right_speed = compute_motor_speeds(left_dist, right_dist)
# 设置电机速度
left_motor.setVelocity(left_speed)
right_motor.setVelocity(right_speed)
# 推进仿真
if robot.step(TIME_STEP) == -1:
break
current_time += TIME_STEP / 1000.0
def main():
# 初始化
robot = Robot()
supervisor = Supervisor()
print("开始机器人评估...")
# 加载基因型
genotype = load_genotype()
print(f"加载的基因型: {genotype}")
# 运行机器人行为
run_robot_behavior(robot, genotype)
# 计算并保存适应度
fitness = compute_fitness(supervisor)
save_fitness(fitness)
# 退出Webots
supervisor.simulationQuit()
robot.step(32)
print("评估完成")
if __name__ == "__main__":
main()
Webots发行版中包含了使用优化技术的完整示例。你可以在WEBOTS_HOME/projects/samples/curriculum/worlds
目录下找到这些世界文件:
--mode=fast
提高评估速度恭喜你完成了Webots数值优化方法教程!你已经学会了在Webots中实现优化算法的多种方法和技术。
方法 | 适用场景 | 优点 | 缺点 |
---|---|---|---|
单控制器 | 单机器人优化 | 代码简单,易于实现 | 不适合多机器人 |
双控制器 | 多机器人,复杂算法 | 支持并行,功能强大 | 通信复杂 |
外部程序 | 分布式,长期运行 | 完全隔离,语言灵活 | 启动开销 |
数值优化是机器人学中的强大工具,能够自动发现最优的机器人行为和控制参数。通过本教程的学习,你已经掌握了在Webots中实现各种优化方法的技能。继续实践和探索,你将能够解决更加复杂和有趣的机器人优化问题!